Top Quark Production and Properties at the Tevatron (Excluding Top Mass)

Frank Fiedler, LMU München
on behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d’Aoste,
27. 2. - 5. 3. 2005

Overview:

- Introduction: top quarks at the Tevatron
- The total $t\bar{t}$ production cross-section
- Further $t\bar{t}$ measurements
- Single top quark production
- Conclusions

many Tevatron Run II results are preliminary!
updates imminent for most of the measurements!
Why Study the Top Quark?

Its mass makes the top quark special among the fermions

- see George Velev’s talk on top mass measurements

Questions to ask the top quark:
“Do you really behave (only) like the Standard Model top quark?”
“If so, what can you tell us about the Standard Model?”

Obtaining answers:
Tevatron experiments CDF & DØ: currently the only experiments where the top quark can be studied

- total $t\bar{t}$ production cross-section (\rightarrow test perturbative QCD \rightarrow new physics?)
- differential cross-sections, top quark properties, decay branching ratios, ...
 (\rightarrow new physics in $t\bar{t}$ production / top decay?)
- single top production ($\rightarrow V_{tb}$ / new physics)
Standard Model Top Production at the Tevatron

Top Pair Production (Strong Interaction)

Feynman diagrams (LO):

- **Strong Interaction**:
 - \(t \bar{t} \) production
 - Feynman diagrams (LO):
 - \(\sigma \sim 6 \text{ pb} \)
 - \(\sim 85\% \)
 - \(\sim 15\% \)

Single Top Quark Production (Electroweak Interaction)

Feynman diagrams (LO):

- **Electroweak Interaction**:
 - Single top quark production
 - Feynman diagrams (LO):
 - \(t \bar{b} + W \) associated production
 - \(\sim 0.12 \text{ pb} \)
 - \(\sim 0.9 \text{ pb} \)
 - \(\sim 1.9 \text{ pb} \)

Frank Fiedler, LMU München

Tevatron Data Taking Performance

Tevatron performance

DØ data taking efficiency

~200 pb\(^{-1}\): integrated luminosity used by many analyses

⇒ similar numbers for CDF

⇒ already surpass Run I integrated luminosity by a factor >5

⇒ physics analyses typically use ≤200 pb\(^{-1}\) so far
$t\bar{t}$ Event Topologies (I)

$|V_{tb}| \gg |V_{ts}|, |V_{td}|$

$\Rightarrow \text{Br}(t \rightarrow Wb) \sim 100\%$

topology determined by W decays:

- 5% dilepton events
- 30% lepton+jets events
- 44% hadronic events
- 21% events with τ leptons
t\bar{t} Event Topologies (II)

Dilepton Events: 5%
- 2 energetic, isolated leptons of opposite charge
- 2 energetic b jets
- Missing transverse energy

- Lepton(+jets) trigger
 → Small but pure sample

Lepton+jets Events: 30%
- 1 energetic, isolated lepton
- 4 energetic jets (of which 2 b jets)
- Missing transverse energy

- Lepton(+jets) trigger
 → Large event sample, still good purity

Hadronic Events: 44%
- 6 energetic jets (of which 2 b jets)
- Event balanced in transverse plane
- Only jet based triggers

 → Large background (⇒ b identification!)

Events with \(\tau\) leptons: 21%
- Additional neutrino(s) from \(\tau\) decay
- Challenging to reconstruct

 → Interesting for new physics searches
 (e.g. \(t \rightarrow H^+b\))

Frank Fiedler, LMU München

Les Rencontres de Physique de la Vallée d’Aoste, 27. 2. - 5. 3. 2005
Top Quark Production and Properties at the Tevatron (Excluding Top Mass)

Frank Fiedler, LMU München
on behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d’Aoste,
27. 2. - 5. 3. 2005

Overview:

● Introduction: top quarks at the Tevatron
● The total $t\bar{t}$ production cross-section
● Further $t\bar{t}$ measurements
● Single top quark production
● Conclusions

many Tevatron Run II results are preliminary!
updates imminent for most of the measurements!
Lepton+Jets, CDF Topological Analyses (I)

Event selection:
- 1 lepton
 \((p_T > 20 \text{ GeV})\),
- \(E_T > 20 \text{ GeV}\),
- \(\geq 3\) jets
 \((E_T > 15 \text{ GeV}, |\eta| < 2.0)\)

\(H_T\) distribution, \(\geq 3\) jets:
\[
\sigma(t\bar{t}) = (4.7 \pm 1.6 \pm 1.8) \text{ pb}
\]

NN output distribution, \(\geq 3\) jets:
\[
\sigma(t\bar{t}) = (6.7 \pm 1.1 \pm 1.6) \text{ pb}
\]
• neural network inputs chosen to optimise total error
• both analyses: main systematic error from jet energy scale

analysis using H_T distribution only:

- jet energy scale: ±30%
- total systematic error: ±39%
- statistical error: ±34%

optimised analysis using neural network:

- jet energy scale: ±16%
- total systematic error: ±22%
- statistical error: ±16%
Lepton+Jets, DØ Topological Analysis (I)

Event selection:

- 1 isolated energetic lepton ($p_T > 20$ GeV)
- missing transverse energy ($E_T(e+\text{jets}) > 20$ GeV, $E_T(\mu+\text{jets}) > 17$ GeV)
- at least 4 jets ($E_T > 15$ GeV, $|\eta| < 2.5$)

Determination of the $t\bar{t}$ content:

- avoid dependence on absolute energy scale for first analysis
- construct a likelihood discriminant using angular variables and ratios of energy dependent variables, like:

\begin{align*}
S &= 3/2(\lambda_2 + \lambda_3) \\
\lambda_i: & \text{ eigenvalues of normalised momentum tensor}
\end{align*}

- dijet event $\rightarrow S \sim 0$, isotropic event $\rightarrow S \sim 1$

\begin{align*}
H'_{T2} &= H_{T2}/H_z: \text{ measures event centrality} \\
H_{T2}: & \text{ scalar jet } p_T \text{ sum, excluding leading jet} \\
H_z: & \text{ scalar } |p_z| \text{ sum of jets, lepton, and neutrino}
\end{align*}
Likelihood distributions (separately for e+jets and μ+jets events):

Result (combined):

$$\sigma(t\bar{t}) = (7.2^{+2.6}_{-2.4\text{(stat)}})^{+1.6}_{-1.7\text{(syst)}} \pm 0.5\text{(lumi)}\text{ pb}$$
B Tagging

- every $t\bar{t}$ event contains 2 b-jets ($Br(t \rightarrow Wb) \approx 100\%$ in the SM)
 → improve signal/background ratio by b-tagging:

 - tracks with large impact parameter
 - secondary vertices
 example: DØ event tagging probabilities:
 $\varepsilon(t\bar{t}) \sim 60\%$, $\varepsilon(W+\text{jets}) \sim 4\%$
 (events with ≥ 4 jets, ≥ 1 tag)
 - soft leptons (muons) from semileptonic decays
 example: CDF event tagging probabilities:
 $\varepsilon(t\bar{t}) \sim 16\%$, $\varepsilon(W+\text{jets}) \sim 3\%$
 (events with ≥ 3 jets, ≥ 1 tag)

Frank Fiedler, LMU München

Les Rencontres de Physique de la Vallée d’Aoste, 27. 2. - 5. 3. 2005
Lepton+Jets, DØ B-Tagging Analyses

- Select events with 1 lepton ($p_T > 20$ GeV), missing E_T

 $(E_T(e+jets) > 20$ GeV, $E_T(\mu+jets) > 17$ GeV), n jets ($E_T > 15$ GeV), and ...

exactly one secondary vertex tagged jet:

\[
\sigma(t\bar{t}) = (8.2 \pm 1.3^{+1.9}_{-1.6} \pm 0.5) \text{ pb}
\]

\[
\sigma(t\bar{t}) = (7.2^{+1.3}_{-1.2}^{+1.9}_{-1.4} \pm 0.5) \text{ pb}
\]

impact parameter b tagging, similar analysis (158–169 pb$^{-1}$):

tt: 7 pb expected contribution shown

background validation region

signal fit region

DØ Run II Preliminary

\[
\text{no. of tagged events vs jet multiplicity}
\]

background validation region

signal fit region

DØ Run II Preliminary

\[
\text{no. of events vs jet multiplicity}
\]
Lepton+Jets, CDF Vertex B-Tag Analyses

- Select events with 1 lepton ($p_T > 20$ GeV), $\not{E}_T > 20$ GeV, and ≥ 3 jets ($E_T > 15$ GeV, $|\eta| < 2.0$)
- require at least one secondary vertex tagged jet
- n_{jet} distribution:

![Graph showing the number of tagged events vs. number of jets in W+jets]

- require exactly one secondary vertex tagged jet
- $t\bar{t}$ fraction from leading jet E_T spectrum
- background shape from data (events w/o b-tag)

FERMILAB-PUB-04-275-E

- result (162 pb$^{-1}$):

$$\sigma(t\bar{t}) = (5.6^{+1.2}_{-1.1} +0.9) \text{ pb}$$

FERMILAB-PUB-04-207-E

- result (162 pb$^{-1}$):

$$\sigma(t\bar{t}) = (6.0 \pm 1.6 \pm 1.2) \text{ pb}$$

Frank Fiedler, LMU München

Les Rencontres de Physique de la Vallée d'Aoste, 27. 2. - 5. 3. 2005
Lepton+Jets, CDF Analysis, Soft Muon Tagging

- Select events with 1 lepton ($p_T > 20$ GeV), $\vec{E}_T > 20$ GeV, and n jets ($E_T > 15$ GeV, $|\eta| < 2.0$)
- require one jet to be b-tagged by the presence of a soft muon inside a jet from a semimuonic b or c decay

- Result (200 pb^{-1}):
 \[\sigma(t\bar{t}) = (5.2^{+2.9+1.3}_{-1.9-1.0}) \text{ pb} \]
Dilepton Analyses (I)

CDF measurements ($\sim 200\text{pb}^{-1}$):

- events with 2 isolated tracks ($p_T > 20\text{ GeV}$), $\not{E}_T > 25\text{ GeV}$, and n jets

 2 leptons

 1 lepton + 1 track

- combined result (200 pb^{-1}):

 $\sigma(t\bar{t}) = (7.0^{+2.4}_{-2.1}^{+1.6}_{-1.1} \pm 0.4)\text{ pb}$

 PRL 93, 142001 (2004)

similar DØ “2 lepton” type measurement ($140–156\text{ pb}^{-1}$):

$\sigma(t\bar{t}) = (14.3^{+5.1}_{-4.3}^{+2.6}_{-1.9} \pm 0.9)\text{ pb}$
Variations of the $t\bar{t}$ dilepton analysis:

- measure $t\bar{t}$, WW, and $Z \rightarrow \tau\tau$ production (CDF, 200 pb^{-1}):

- apply b-tagging (DØ, 158 pb^{-1}):

\[\sigma(t\bar{t}) = (8.6^{+2.5}_{-2.4} \pm 1.1) \text{ pb} \]
\[\sigma(WW) = (12.6^{+3.2}_{-3.0} \pm 1.2) \text{ pb} \]
\[\sigma(t\bar{t}) = (11.1^{+5.8}_{-4.3} \pm 1.4 \pm 0.7) \text{ pb} \]
Alljets Analyses

- Need b-tagging + tight kinematic criteria to see a signal:
 - 6 to 8 jets (signal region)
 - no isolated leptons
 - kinematic cuts
 → number of tagged jets:

- ≥6 jets
 - exactly 1 b-tagged jet
 - kinematic neural network
 → second neural network including reconstructed masses:

\[
\sigma(t\bar{t}) = (7.8 \pm 2.5^{+4.7}_{-2.3}) \text{ pb}
\]

Frank Fiedler, LMU München
Les Rencontres de Physique de la Vallée d’Aoste, 27. 2. - 5. 3. 2005
The $t\bar{t}$ Production Cross-Section

- Production cross-section $\sigma(p\bar{p}) \rightarrow t\bar{t} + X$

CDF Run II Preliminary

\Rightarrow all results consistent so far (detectors and SM work ok)
\Rightarrow consistent combination in progress

Frank Fiedler, LMU München
Les Rencontres de Physique de la Vallée d'Aoste, 27. 2. - 5. 3. 2005
Overview:

- Introduction: top quarks at the Tevatron
- The total $t\bar{t}$ production cross-section
- Further $t\bar{t}$ measurements
- Single top quark production
- Conclusions

many Tevatron Run II results are preliminary!
updates imminent for most of the measurements!
Anomalies in $t\bar{t}$ Production? (I)

Measured $t\bar{t}$ production in a large variety of channels
→ Any room for physics beyond the Standard Model?

(I) Model independent analyses:

- Compare cross-sections in different channels (CDF, 125 pb$^{-1}$):
 \[\frac{\sigma(\text{dilepton})}{\sigma(\ell + \text{jets})} = 1.45^{+0.83}_{-0.55}\]

- CDF $t\bar{t}$ dilepton events:
 - look at four kinematic distributions (chosen a priori)
 - three of four distributions look ~ as expected
 - most significant deviation from expectation:
 leading lepton p_T spectrum →

 FERMILAB-PUB-04-396-E:
 - overall 1.0–4.5% compatibility with the SM prediction (193 pb$^{-1}$)

Frank Fiedler, LMU München

Les Rencontres de Physique de la Vallée d’Aoste, 27. 2. - 5. 3. 2005
(II) Model dependent analysis:

- search for $t' \rightarrow Wq$ decays

excess of events at large H_T?

limit as a function of assumed t' mass:

CDF Run 2 (195 pb$^{-1}$)

$\sigma(p\bar{p} \rightarrow t't', \ell + \geq 4\text{ jets})$

95% CL upper limit, $m_{t'}=225$ GeV

Cacciari, et al., NLL resummed

hep-ph/0303085
Expect to see only $t \rightarrow Wb$ decays at the Tevatron
\rightarrow anything else would indicate new physics

(I) Is the “W” we measure the W we expect?
- W helicity measurements
- measurement of $t \rightarrow \tau \nu b$
- search for charged Higgs bosons in top decay

(II) Is the “b” we measure the b we expect?
- measurement of $Br(t \rightarrow Wb)/Br(t \rightarrow Wq)$
(V−A) structure of the weak interaction

⇒ spins of top decay products:

\[\begin{align*}
\text{b quark:} & \quad \text{top quark:} & \quad \text{W boson:} \\
\Rightarrow & & 0 \\
\Rightarrow & & 0 \\
\Rightarrow & & 0 \\
\Rightarrow & & 0
\end{align*} \]

(spin component along b/W momentum axis)

⇒ SM predictions: fraction of top decays with a...

- longitudinal W boson \(F_0 = \frac{1}{1+2m_W^2/m_t^2} \approx 0.70 \)
- left-handed W boson \(F_- = 1 - F_0 \approx 0.30 \)
- right-handed W boson \(F_+ = 0 \)

⇒ distributions of decay angle \(\theta^* \) in

W rest frame for different W helicities:
W Helicity in Top Decays (II)

Measurement strategies at Tevatron Run II:

- lepton p_t from leptonically decaying W (CDF)
- explicit reconstruction of decay angle $\cos \theta^*$ (CDF & DØ)

CDF Run II measurements:

lepton p_t spectrum:

CDF Run II Preliminary (162 pb$^{-1}$)

$$F_0 = 0.27^{+0.35}_{-0.24}$$

DØ Run I: extended matrix element (cf. m_t measurement) → $F_0 = 0.89^{+0.30}_{-0.34}$(stat) ± 0.17(syst)

$$F_0 = 0.56 \pm 0.31$$
DØRun II measurements:
decay angle, topological selection:

\[F_+ < 0.24 \text{ at } 90\% \text{ C.L.} \]

CDF Run I measurement:
\[m_{\ell b} \text{ (similar to } \cos \theta^* \text{)} \& \text{ lepton } p_t: F_+ < 0.18 \text{ at } 95\% \text{ C.L.} \]
Charged Higgs Search

charged Higgs with $m_{H^\pm} < m_t$?

→ subtle changes in event topology according to H^\pm decay:

large $\tan \beta$: $H^+ \rightarrow \tau \nu$
excess of τ decays in $t\bar{t}$ events

small $\tan \beta$: \begin{align*}
H^+ &\rightarrow c\bar{s} \\
H^+ &\rightarrow Wb\bar{b}
\end{align*}
2 extra b jets in $t\bar{t}$ events

inputs to CDF analysis:

- $\sigma(t\bar{t} \rightarrow \text{dilepton})$
- $\sigma(t\bar{t} \rightarrow \ell + \text{jets})$
- $\frac{\sigma(t\bar{t} \rightarrow \ell + \tau)}{\text{SM expectation}} < 5.0$ at 95% C.L.
Does the top quark decay to other quarks than b quarks?

- compare $t\bar{t}$ event rates with 0 (CDF only), 1, and 2 b-tagged jets

$$\frac{Br(t \rightarrow Wb)}{Br(t \rightarrow Wq)} = \begin{cases}
1.11^{+0.21}_{-0.19} \text{(stat + syst)} & \text{CDF, 162 pb}^{-1} \\
0.65^{+0.34}_{-0.30} \text{(stat)}^{+0.17}_{-0.12} \text{(syst)} & \text{DØ, imp. par., 158−169 pb}^{-1} \\
0.70^{+0.27}_{-0.24} \text{(stat)}^{+0.11}_{-0.10} \text{(syst)} & \text{DØ, sec. vtx., 158−169 pb}^{-1}
\end{cases}$$

Note: Cannot measure $|V_{tb}|$ in top decays:

$$\frac{Br(t \rightarrow Wb)}{Br(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} = \frac{|V_{tb}|^2}{1} \text{ in the SM}$$

$$= \frac{|V_{tb}|^2}{?} \text{ for } > 3 \text{ generations}$$

⇒ single top production: SM cross-section $\sim |V_{tb}|^2!$

+ sensitivity to new physics...
Top Quark Production and Properties at the Tevatron (Excluding Top Mass)

Frank Fiedler, LMU München
on behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d’Aoste,
27. 2. - 5. 3. 2005

Overview:

- Introduction: top quarks at the Tevatron
- The total $t\bar{t}$ production cross-section
- Further $t\bar{t}$ measurements
- Single top quark production
- Conclusions

many Tevatron Run II results are preliminary!
updates imminent for most of the measurements!
Concentrate on \textit{s and t channel production} (t+W not feasible at the Tevatron)

Expected event topology: (only consider \textit{leptonic W decays})

- top decay products: lepton, E_T, one energetic b jet
- \textit{s-channel}: another energetic b jet
- \textit{t-channel}: other b jet at large $|\eta|$, low p_T
- additional light quark jet

\begin{itemize}
 \item $0.9 \, \text{pb}$
 \item $1.9 \, \text{pb}$
\end{itemize}

Challenge: large W+jets background
Selection of single top events at DØ/CDF:

- energetic isolated charged lepton, $Z \rightarrow \ell\ell$ veto
- missing transverse energy
- 2−4 / 2 jets, at least one b-tagged jet
- H_T cut / reconstructed top mass: $140 < m_{bl\nu} < 210$ GeV
- $Q_{\text{lepton}} \cdot \eta_{\text{b jet}}$ distribution to disentangle s and t channels

Single Top Results

- $\sigma(\text{single top}) < ...$

<table>
<thead>
<tr>
<th>Channel</th>
<th>CDF</th>
<th>DØ</th>
</tr>
</thead>
<tbody>
<tr>
<td>s channel</td>
<td>13.6 pb</td>
<td>19 pb</td>
</tr>
<tr>
<td>t channel</td>
<td>10.1 pb</td>
<td>25 pb</td>
</tr>
<tr>
<td>$s+t$ channel</td>
<td>17.8 pb</td>
<td>23 pb</td>
</tr>
</tbody>
</table>

\Rightarrow limits from Run II better than from Run I

- compare with expected t-channel cross-section of $\sim 1.9 \text{ pb}$:
 \Rightarrow need more integrated luminosity to measure $|V_{tb}|$

- new, refined analyses with more data on their way...

- expect to see (SM) single top production with a few fb^{-1}
 (...hope to find new physics...)

Frank Fiedler, LMU München
Les Rencontres de Physique de la Vallée d'Aoste, 27. 2. - 5. 3. 2005
Conclusions

Top physics at Tevatron Run II:

- **$t\bar{t}$ cross-section** measured in many channels: consistent with SM
 \rightarrow next steps: work on systematic errors (jet energy scale!)
 combination of channels

- **more $t\bar{t}$ measurements:**
 differential cross-sections, W helicity measurements,
 search for rare top decays
 \rightarrow great potential with increasing data samples

- **Single top production** ($\rightarrow |V_{tb}|$):
 Run II limits surpass Run I results
 looking forward to more data, and:
 \rightarrow working towards the discovery of single tops at the Tevatron!

- **Top mass**: see George Velev’s presentation
Backup Slides

... on the following pages ...
optimum choice:

- scalar sum of transverse energies, H_T
- aplanarity, A
- minimum di-jet mass, $\min(m_{jj})$
- maximum jet rapidity, η_{max}
- minimum di-jet separation, $\min(\Delta R_{jj})$
- sum of jet transverse energies excluding the two leading jets, $\sum_{i=3}^{5} E_T^i$
- sum of jet longitudinal momenta divided by sum of jet transverse energies, $(\sum p_z)/(\sum E_T)$
normalised momentum tensor $M_{ij} = \frac{\sum_k p_k^i p_k^j}{\sum_k |p_k|^2}$, eigenvalues: $\lambda_1 \geq \lambda_2 \geq \lambda_3$, $\sum \lambda_i = 1$

- sphericity: $S = 3/2(\lambda_2 + \lambda_3)$
- aplanarity: $A = 3/2 \cdot \lambda_3$
- $H_{T2}' = H_{T2}/H_z$: measures event centrality
 H_{T2}: scalar jet p_T sum, excluding leading jet
 H_z: scalar $|p_T|$ sum of jet, lepton, and neutrino
- $K_{T_{\text{min}}}'$: measure of minimum relative jet p_T
 take the minimum dijet separation, multiply by the smaller of the two jet E_T values
 divide by $E_T(W \rightarrow \ell \nu)$ to reduce jet energy scale dependence
 tends to have small values for main background
select events with 1 lepton, missing E_T, and ≥ 3 jets

- require two jets to be secondary vertex b-tagged
 - reduced systematic error from background cross-sections
 - but b-tagging efficiencies “count twice”

\[
\sigma(t\bar{t}) = (5.4^{+2.4}_{-1.9}(\text{stat})^{+1.1}_{-0.9}(\text{syst})) \text{ pb}
\]

Frank Fiedler, LMU München

Les Rencontres de Physique de la Vallée d’Aoste, 27. 2. - 5. 3. 2005
CDF Analysis Looking for Anomalies in Dilepton Events

Look at four kinematic variables in dilepton events

Quantities chosen a priori:

lepton transverse momentum

\[T = \int \exp \left\{ -\frac{\left(\vec{E}_T^{\text{predicted}} - \vec{E}_T^{\text{measured}} \right)^2}{2\sigma_T^2} \right\} \, d\vec{E}_T^{\text{predicted}} \]

missing transverse energy

\[\Delta \phi(\ell, \vec{E}_T) \]