Search for SUSY in Gauge Mediated and Anomaly Mediated SB Models

Thomas Nunnemann LMU Munich

EPS HEP03 16.7.-23.7.2003

• GMSB searches at LEP/OPAL
• GMSB searches at Tevatron/DØ and prospects for Run II
• AMSB searches at LEP/Delphi
Gauge Mediated SUSY Breaking

- Alternative to gravity mediated SUSY breaking: Gauge interactions with messenger fields at a scale $M_{mess} \ll M_{Planck}$ are responsible for SUSY breaking.
- Gauge interactions are flavour blind, thus no FCNC (as in SUGRA models)
- The LSP is a Goldstone Fermion: Gravitino $\tilde{G}: M(\tilde{G}) \leq 1\text{keV}$
- The NLSP (next-to-lightest SUSY particle) is either the lightest neutralino (bino) or a charged slepton (mostly stau)
 $$\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$$
 $$\tilde{l} \rightarrow l \tilde{G}$$
- The NLSP lifetime can range from 0 to ∞
 \Rightarrow many different topologies

- Minimal set of parameters:
 - Λ: scale of SUSY masses
 - M_{mess}: messenger mass scale
 - N_{mess}: number of mess. fields
 - $\tan \beta$: ratio of Higgs v.e.v.
 - $|\mu|$: sign of higgs mass term
GMSB Topologies

<table>
<thead>
<tr>
<th>NLSP</th>
<th>NLSP lifetime:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
<td>medium</td>
<td>long</td>
</tr>
<tr>
<td>stau, sleptons</td>
<td>2 leptons +</td>
<td>2 heavy,</td>
</tr>
<tr>
<td>(charged particles)</td>
<td>missing energy:</td>
<td>charged</td>
</tr>
<tr>
<td></td>
<td>(kinked tracks)</td>
<td>particles:</td>
</tr>
<tr>
<td>neutralino</td>
<td>2 photons +</td>
<td>missing</td>
</tr>
<tr>
<td>(neutral particles)</td>
<td>missing energy:</td>
<td>energy:</td>
</tr>
<tr>
<td></td>
<td>1 or 2 photons,</td>
<td>not pointing</td>
</tr>
<tr>
<td></td>
<td>not pointing to</td>
<td>to vertex:</td>
</tr>
</tbody>
</table>

Tracker **Electromagnetic calorimeter**

Thomas Nunnemann EPS HEP03 - Search for SUSY in GMSB and AMSB
Neutralino NLSP: $\gamma\gamma$ Production

Signal: Pair prod. of acoplanar $\gamma\gamma$:

- Expected SM production:

- GMSB interpretation of CDF $ee\gamma\gamma E_T$ event excluded
- Within GMSB Snowmass Slope parameter set (used by DØ):

 $$M(\tilde{\chi}_1^0) > 100 \text{ GeV}, \quad M(\tilde{e}) > 130 \text{ GeV}$$
Stau NLSP

- Combination of four different analysis, sensitive to various stau life times
- Measurement: upper limit on the production cross section in the plane $M(\tau_1) - \tau_{\text{life}}$

$$M(\tau_1) > 87.6 \text{ GeV}$$

Lower stau mass limits obtained by comparison to theoretical predictions of cross section $M(\tau_1)$.
Inclusive Search for $\gamma \gamma$ Missing $E_T (\not{E}_T)$

- Dominating production channels at Tevatron: $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}$
- In case of Neutralino NLSP:

 $\text{gauginos} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} + W, Z, \gamma \rightarrow \gamma \gamma + \tilde{G}\tilde{G} + X$

- Analysis assumes short NLSP lifetime \Rightarrow prompt decay
- 2 γ's in central calorimeter ($|\eta| \leq 1.1$)
 - w. transverse energy $E_T > 20\text{GeV}$
 - γ-consistent shower shape
 - isolation requirement based on energy deposition
 - e^\pm veto: no matched tracks
- Measurement of missing E_T distribution of di-photon events

- γ pointing using highly segmented LAr calorimeter and Preshower strips
- γ vertex resolution (beam direction):
 - Calorimeter only: $\sigma_z \approx 15 \text{ cm}$
 - used in this analysis
 - Central Preshower: $\sigma_z \approx 2.2 \text{ cm}$
 - not fully commissioned yet, but good prospects for future analyses
Background Estimation

- **Background without true missing E_T:**
 - Dominating: QCD with direct photons or jets mis-identified as γ's (due to leading π^0)
 - Contribution estimated using fake $\gamma\gamma$ sample: at least one γ candidate fails shower shape requirement, normalized at low $E_T < 20$ GeV
 - Drell-Yan, electrons mis-identified as γ's due to track reconstruction inefficiency

- **Background with true missing E_T (from ν):**
 - Dominating: $W\gamma \rightarrow e\nu\gamma$ (missed tracks)
 - W+jet $\rightarrow e\nu$+jet (jet faking γ)
 - Contribution estimated using $e\gamma$ sample and $e\rightarrow\gamma$ mis-identification probability derived from data

<table>
<thead>
<tr>
<th>$\gamma\gamma$ events</th>
<th>$E_t > 25$ GeV</th>
<th>$E_t > 30$ GeV</th>
<th>$E_t > 35$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD (w. wrong E_t)</td>
<td>6.0 ± 0.8</td>
<td>2.5 ± 0.5</td>
<td>1.6 ± 0.4</td>
</tr>
<tr>
<td>e+ν+γ/j</td>
<td>0.6 ± 0.4</td>
<td>0.2 ± 0.2</td>
<td>0.0 ± 0.2</td>
</tr>
</tbody>
</table>
Search for Excess in E_T Spectrum

- No excess seen in missing E_T distribution
- Signal efficiencies derived using Snowmass Slope for GMSB:
 \[M_{mess} = 2\Lambda, \quad N_{mess} = 1, \]
 \[\tan \beta = 15, \quad \mu > 0 \]
 - combined efficiency: \(\sim (7-10)\% \)
 for $E_T > 30$ GeV and $45 < \Lambda < 55$ TeV
 - including trigger and reconstruction efficiencies
- Upper limits on cross sections are calculated using bayesian approach with cut: \(E_T > 30\) GeV

Run 2 preliminary

Simulated Signal

\(\Lambda = 55\) TeV
\(\Lambda = 45\) TeV
\(\Lambda = 35\) TeV

MET, GeV

\(\gamma\gamma \) search region

QCD

MET, GeV
95% C.L. Limits
\[\Lambda > 51 \text{ TeV} \]
\[M(\tilde{\chi}_1^0) > 66 \text{ GeV} \]
\[M(\tilde{\chi}_1^\pm) > 116 \text{ GeV} \]

- Comparing cross section limits with theoretical predictions:

- Measurement is based on luminosity \(L = 41 \text{ pb}^{-1} \)
- Results are approaching limits from Run I analyses based on \(\sim 100 \text{ pb}^{-1} \) (similar models)
 - DØ: \(M(\tilde{\chi}_1^0) > 77 \text{ GeV} \)
 - CDF: \(M(\tilde{\chi}_1^0) > 65 \text{ GeV} \)
Prospects for Tevatron Run II

- Prompt neutralino decays:
 - With $L = 2 \text{ fb}^{-1}$ discovery up to $M(\tilde{\chi}_1^0) \approx 165 \text{ GeV}, \ M(\tilde{\chi}_1^\pm) \approx 300 \text{ GeV}$
 (J. Qian, hep-ph/9903548 v2, similar model, but $\tan \beta = 2.5$)
 - LEP limit (from acoplanar $\gamma\gamma$ search):
 $M(\tilde{\chi}_1^0) > 100 \text{ GeV}, \ M(\tilde{\chi}_1^\pm) > 175 \text{ GeV}$

- Intermediate neutralino life-time
 - Sensitivity drops as NLSP decays outside detector
 - Larger sensitivity in photon+jets+E_T channel

- Opal: for any NLSP life-time
 $M(\tilde{\chi}_1^\pm) > 100 \text{ GeV}$
Prospects for Stau NLSP Scenario

- High mass reach also in stau NLSP scenario
- Short-lived stau
 - Prompt decay
 - Standard SUSY searches: Tri-lepton or like-sign di-lepton signature
- Quasi-stable stau
 - Stau escapes detector
 - 2 μ-like objects with large dE/dx

J. Qian: hep-ph/9903548 v2
• SUSY breaking is mediated by anomalies in the supergravity lagrangian
 ◆ Provides soft mass parameters in visible spectrum
 ◆ No need for messenger sector
 ◆ Flavour blind \Rightarrow FCNC automatically suppressed
 ◆ But: need additional non-anomaly contribution to avoid tachyonic sleptons

• AMSB model is very predictive
 ◆ Defined by $m_{3/2}$, m_0, $\tan \beta$ and sign(μ)

• LSP: $\tilde{\chi}_1^0, \tilde{\nu}, \tilde{\tau}$

• Neutralino and chargino are gaugino-like and nearly mass degenerate
 \[\Delta M = M(\tilde{\chi}_1^\pm) - M(\tilde{\chi}_1^0) < O(10 \text{ GeV}) \]
Small ΔM Chargino Search

- Problem: small ΔM means little visible energy.
- \Rightarrow large background from $\gamma\gamma$-scattering
- Require ISR tag!
- Exclusion region depends on sneutrino mass.
 - Leptonic decay mode $\tilde{\chi}_1^{\pm} \rightarrow \bar{\nu}^{*} l^{\pm} \rightarrow \tilde{\chi}_1^0 \nu l^{\pm}$
 - important for small sneutrino masses

Delphi
Constraints on AMSB Parameter Region

- Combination of various analyses to constrain AMSB parameter space
 - LEP1 constrain (Z width)
 - SM Higgs search
 - Invisible Higgs search
 - Small ΔM chargino search
 - Search for $\tilde{\chi}_1^\pm \rightarrow \tilde{\nu} l^\pm$

- Parameter scan using Isajet:
 - $M(\tilde{\chi}) > 68 \text{ GeV}$
 - $M(\tilde{\nu}) > 98 \text{ GeV}$
 - $M(\tilde{l}) > 72 \text{ GeV}$
Summary and Outlook

• Many different topologies have been studied by the LEP experiments.
 - Combination of results is used to set limits for all NLSP lifetimes and to cover most of the kinematically accessible parameter space for the GMSB and AMSB scenarios.

• First results from Tevatron are approaching Run I limits with much smaller statistics.

• For GMSB models Tevatron has the potential to significantly improve lower limits on SUSY particle masses.

Many thanks to Christoph Rembser for the valuable discussion on the LEP results!