Precision Tracking at High Background Rates with the ATLAS Muon Spectrometer

Ralf Hertenberger, LS Schaile, LMU München for the ATLAS Collaboration CERN

ICHEP 2012 Melbourne
Rediscovery of the Standard Model

design: $\Delta p/p = 10\%$ @ 1 TeV

the ATLAS muon spectrometer works according to specs

ATLAS preliminary

Data 2010, $\sqrt{s} = 7$ TeV

Design: $\Delta p/p = 10\%$ @ 1 TeV $\mu \rightarrow \Delta x < 100 \mu m$
Cylindrical Drift-Tube Detector: principle

charged particle

Ar:CO\textsubscript{2} 93:7%
3 bar
3080 V
\(\phi = 3\) cm
gain=20000
\(\Delta r = 80\) \(\mu m\)

\(t_{\text{drift}}\):
measurement

\(r'_{\text{drift}}\):
\(f (t_{\text{drift}}, E\text{-field}, \text{hit rate}, \ldots)\)

autocalibration

\[\begin{array}{c}
\text{Ar:CO}_2 \\
\text{linear}
\end{array} \]
Space Charge Fluctuations:

- positive ions \(\Rightarrow\) space charge 4 ms
- \(E\)-field \(<\) near anode
- \(E\)-field \(>\) near tube wall

Reduced gas-amplification, fluctuating max. drift-time
\(\Rightarrow\) reduced efficiency
\(\Rightarrow\) reduced spatial resolution
\(\Rightarrow\) rate limited

\[t_{\text{max}} = 4 \text{ ms}\]
Expected Background at HL-LHC: \(L = 5 \times 10^{34} / \text{cm}^2 \text{ s} \)

max. background hit rates:

10 kHz / cm\(^2\) \(@ \ L = 5 \times 10^{34} / \text{cm}^2 \text{ s} \)

high-rate capable detectors necessary

no ageing!

replacement: 2018
LMU Detector-Development Studies for different regions of the μ-spectrometer

option for region of moderate background at HL-LHC:
linear and fast drift-gas (using unmodified 3cm drift-tubes)
gas with electron drift independent on electric field
reduced space charge fluctuations
less occupancy

regions of highest background for LHC and HL-LHC:
sMDT: drift-tubes with reduced radius (15mm) (H. Kroha 12:30)
reduced occupancy (factor 7)
linear region of rt-relation => small space charge fluctuations
high rate capability

micromegas (micromesh gaseous detector)
planar structure with geometrically optimized ion path length
direct position measurement
multi-track resolution
Linear, Fast Drift Gas \(\text{Ar:CO}_2:\text{N}_2 \)
option for 3cm drift-tubes at HL-LHC

Garfield / Magboltz simulation

less \(\text{CO}_2 \) => faster gas
\(\text{N}_2 \): modifies only the region \(r < 0.4 \text{ cm} \) => more linear

\[\Rightarrow \text{Ar:CO}_2:\text{N}_2 \ 96:3:1 \ % \text{ Vol.} \]
Reduced Background Sensitivity Ar:CO$_2$:N$_2$

3 cm drift-tubes

gamma irradiation facility CERN

Ar:CO$_2$: $t_{\text{max}} = 680$ ns
Ar:CO$_2$:N$_2$: $t_{\text{max}} = 440$ ns

1900 Hz/cm2:
Ar:CO$_2$: $\Delta r = 234$ μm
Ar:CO$_2$:N$_2$: $\Delta r = 129$ μm
Ageing Study of Ar:CO₂ 93:7 and Ar:CO₂:N₂ 96:3:1 for 3 cm drift-tubes

No ageing observed! 1 lifetime ATLAS in 6h

105 nA p 20 MeV
irradiated spot: 7 cm * 1 cm

=> 7 As / 7 cm = 1 * lifetime ATLAS
Option for 3cm Drift-Tubes @HL-LHC
Ar:CO$_2$:N$_2$ 96:3:1 % Vol.

linear drift gas, strongly reduced space charge fluctuations

$t_{\text{max}} : 440 \text{ ns} \quad \longleftrightarrow \quad 680 \text{ ns}$
factor 1.5 less occupancy

no ageing

very small amount of afterpulses,
$t_{\text{max}}(\text{Ar:CO}_2:\text{N}_2)$ never longer than $t_{\text{max}}(\text{Ar:CO}_2)$

no streamer observed @ gas gain 20000
Regions of Highest Background @ LHC and HL-LHC

Micromegas Detectors

features:

excellent position resolution
trigger capability
high rate capability
multiple track resolution

$X_{\text{strip}}, t_{\text{strip}} \Rightarrow$ position and angle of μ-track
MicroMeGaS Detector 9x10 cm²

-930 V
Ar:CO₂ 93:7%
1 bar
-530 V
anode strips
pitch: 250 µm

-530 V
cathode
-900 V

5 mm
0.8 kV/cm
128 µm
40 kV/cm

amplifying mesh including pillar
Determination of Spatial Resolution with 160 GeV π @H6 / CERN using tracking telescope

\[\sigma_{sr} = \sqrt{\sigma_{ex}^2 - \sigma_{track}^2} \]

\(\sigma_{ex} = 55 \mu m\)

one detector excluded from fit

data: H6 / CERN July 2011

\[\text{residual} \]

<table>
<thead>
<tr>
<th>Entries</th>
<th>28990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.008882</td>
</tr>
<tr>
<td>RMS</td>
<td>0.08524</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>255.6 / 62</td>
</tr>
<tr>
<td>Constant</td>
<td>735.4 ± 8.2</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.009497 ± 0.000369</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.05456 ± 0.00034</td>
</tr>
</tbody>
</table>
4 standard micromegas: copper strips, 250 μm pitch
9 x 10 cm² Gassiplex readout

spatial resolution

E_{amp}=42.2 kV/cm
E_{amp}=39.1 kV/cm

data: H6 / CERN July 2011

hit efficiency

E_{amp}=42.2 kV/cm
E_{amp}=39.1 kV/cm

data: H6 / CERN July 2011

spatial resolution 35 μm @ 160 GeV π, orthogonal beam
tracking resolution < 20 μm to test large structures w. 4 micr.
efficiency > 99 % @ Ar:CO₂ 85:15 1 bar
Two Approaches to Reduce Sensitivity to Discharges

resistive strip technology

floating strip technology

idea:
discharge loads upper strip
discharge stops as potential on strip rises
fast recovery process, ageing?

5.8 MeV α induce discharges @ 3×10^8 e$^-$/mm2

Data LMU July 2012
Resistive Strip MM in 11 MeV Neutron Beam @ LMU

Resistive strip MM

HV_mesh

stable running

I_mesh

$10^7 \text{ n/cm}^2 \text{s}$ 30x30cm2

MBT0 ATLAS

minimum bias trigger region

very high background rates

detector current scales similar to luminosity

stable running, ageing-test

CERN ATLAS MBT0
Summary: High Precision μ Tracking at HL-LHC

$\text{Ar:CO}_2:\text{N}_2$ 96:3:1 option for regions of medium hit-rates @ HL-LHC

fast linear drift-gas using 3cm MDT hardware, e.g. Big-Wheel

micromegas:
- excellent position resolution $\Delta r = 34 \, \mu\text{m}$
- 4 – 8 MM-detectors: track-res $< 20 \, \mu\text{m} \Rightarrow$ test of large structures
- efficiency $> 99 \%$ @ 1 bar Ar:CO$_2$
- resistive strip technology reduces deadtime due to discharges
- ageing test in MBT region ongoing

future projects:
- new Small-Wheel: MICROMEGAS as tracking chambers + TGC (thin gap chamber) as trigger chambers
- 2m * 0.6 m large MM structures currently under investigation
- construction of 2*4 layer module ongoing
Backup
Determination of Spatial Resolution – 3 Layer Method

- Interpolate track prediction by two detectors into 3rd and compare with measured hit in that detector.
- \[\delta = r_3 - r_2 \frac{d_{13}}{d_{12}} - r_1 \left(1 - \frac{d_{13}}{d_{12}}\right) \]
 \[(\Delta \delta)^2 = (\Delta r_3)^2 + \left(\frac{d_{13}}{d_{12}} \Delta r_2\right)^2 + \left[(1 - \frac{d_{13}}{d_{12}}) \Delta r_1\right]^2 \]
- 4 different triplett-equations & 4 \[\Delta r_i \rightarrow \text{solvable system} \]
Investigation: End of Analog Signal

Ar:CO\(_2\):N\(_2\) 93:6:1 % Vol
very small amount of afterpulses,
\(t_{max}\) never longer than at Ar:CO\(_2\)
Analog Signal: Ar:CO2 93:7 %